在广泛的实用应用中,需要进行远程感知的城市场景图像的语义细分,例如土地覆盖地图,城市变化检测,环境保护和经济评估。在深度学习技术的快速发展,卷积神经网络(CNN)的迅速发展。 )多年来一直在语义细分中占主导地位。 CNN采用层次特征表示,证明了局部信息提取的强大功能。但是,卷积层的本地属性限制了网络捕获全局上下文。最近,作为计算机视觉领域的热门话题,Transformer在全球信息建模中展示了其巨大的潜力,从而增强了许多与视觉相关的任务,例如图像分类,对象检测,尤其是语义细分。在本文中,我们提出了一个基于变压器的解码器,并为实时城市场景细分构建了一个类似Unet的变压器(UneTformer)。为了有效的分割,不显示器将轻量级RESNET18选择作为编码器,并开发出有效的全球关注机制,以模拟解码器中的全局和局部信息。广泛的实验表明,我们的方法不仅运行速度更快,而且与最先进的轻量级模型相比,其准确性更高。具体而言,拟议的未显示器分别在无人机和洛夫加数据集上分别达到了67.8%和52.4%的MIOU,而在单个NVIDIA GTX 3090 GPU上输入了512x512输入的推理速度最多可以达到322.4 fps。在进一步的探索中,拟议的基于变压器的解码器与SWIN变压器编码器结合使用,还可以在Vaihingen数据集上实现最新的结果(91.3%F1和84.1%MIOU)。源代码将在https://github.com/wanglibo1995/geoseg上免费获得。
translated by 谷歌翻译
具有编码器解码器架构的全卷积网络(FCN)是语义分段的标准范例。编码器 - 解码器架构利用编码器来捕获多级特征映射,其被解码器结合到最终预测中。随着上下文对于精确分割至关重要,已经提出了以智能方式提取此类信息的巨大努力,包括采用扩张/不受欢迎的卷曲或插入注意模块。但是,这些努力都基于与Reset或其他底座的FCN架构,它不能完全利用理论概念的上下文。相比之下,我们提出了Swin变压器作为骨干,以提取上下文信息并设计密集连接的特征聚合模块(DCFAM)的新型解码器,以恢复分辨率并产生分割图。两个遥感语义分割数据集的实验结果证明了提出方案的有效性。
translated by 谷歌翻译
在像素级别的特定类别分配地理空间对象是遥感图像分析中的基本任务。随着传感器技术的快速发展,可以在多个空间分辨率(MSR)中捕获远程感测图像,信息内容显示在不同的尺度上。从这些MSR图像中提取信息表示增强特征表示和表征的巨大机会。但是,MSR图像遭受了两个关键问题:1)地理对象的比例变化和2)在粗略空间分辨率下丢失详细信息。为了弥合这些差距,在本文中,我们提出了一种用于MSR远程感知图像的语义细分的新型刻度感知神经网络(SANET)。 SANET部署了密集连接的特征网络(DCFFM)模块,以捕获高质量的多尺度上下文,使得刻度变化正确地处理,并且对于大型和小物体而增加分割质量。空间特征重新校准(SFRM)模块进一步结合到网络中以学习具有增强的空间关系的完整语义内容,其中删除了信息丢失的负面影响。 DCFFM和SFRM的组合允许SANET学习尺度感知功能表示,这胜过现有的多尺度特征表示。三个语义分割数据集的广泛实验证明了拟议的Sanet在跨分辨率细分中的有效性。
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
While inferring common actor states (such as position or velocity) is an important and well-explored task of the perception system aboard a self-driving vehicle (SDV), it may not always provide sufficient information to the SDV. This is especially true in the case of active emergency vehicles (EVs), where light-based signals also need to be captured to provide a full context. We consider this problem and propose a sequential methodology for the detection of active EVs, using an off-the-shelf CNN model operating at a frame level and a downstream smoother that accounts for the temporal aspect of flashing EV lights. We also explore model improvements through data augmentation and training with additional hard samples.
translated by 谷歌翻译
Seismic data often undergoes severe noise due to environmental factors, which seriously affects subsequent applications. Traditional hand-crafted denoisers such as filters and regularizations utilize interpretable domain knowledge to design generalizable denoising techniques, while their representation capacities may be inferior to deep learning denoisers, which can learn complex and representative denoising mappings from abundant training pairs. However, due to the scarcity of high-quality training pairs, deep learning denoisers may sustain some generalization issues over various scenarios. In this work, we propose a self-supervised method that combines the capacities of deep denoiser and the generalization abilities of hand-crafted regularization for seismic data random noise attenuation. Specifically, we leverage the Self2Self (S2S) learning framework with a trace-wise masking strategy for seismic data denoising by solely using the observed noisy data. Parallelly, we suggest the weighted total variation (WTV) to further capture the horizontal local smooth structure of seismic data. Our method, dubbed as S2S-WTV, enjoys both high representation abilities brought from the self-supervised deep network and good generalization abilities of the hand-crafted WTV regularizer and the self-supervised nature. Therefore, our method can more effectively and stably remove the random noise and preserve the details and edges of the clean signal. To tackle the S2S-WTV optimization model, we introduce an alternating direction multiplier method (ADMM)-based algorithm. Extensive experiments on synthetic and field noisy seismic data demonstrate the effectiveness of our method as compared with state-of-the-art traditional and deep learning-based seismic data denoising methods.
translated by 谷歌翻译
With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.
translated by 谷歌翻译
Feature transformation for AI is an essential task to boost the effectiveness and interpretability of machine learning (ML). Feature transformation aims to transform original data to identify an optimal feature space that enhances the performances of a downstream ML model. Existing studies either combines preprocessing, feature selection, and generation skills to empirically transform data, or automate feature transformation by machine intelligence, such as reinforcement learning. However, existing studies suffer from: 1) high-dimensional non-discriminative feature space; 2) inability to represent complex situational states; 3) inefficiency in integrating local and global feature information. To fill the research gap, we formulate the feature transformation task as an iterative, nested process of feature generation and selection, where feature generation is to generate and add new features based on original features, and feature selection is to remove redundant features to control the size of feature space. Finally, we present extensive experiments and case studies to illustrate 24.7\% improvements in F1 scores compared with SOTAs and robustness in high-dimensional data.
translated by 谷歌翻译